全国服务咨询热线:0546-8338000
PRODUCTS测绘服务

线路与桥隧测量

简要描述:在隧道工程的规划、勘测设计、施工建造和运营管理的各个阶段进行的测量

  • 产品型号:
  • 更新时间:2023-12-26
  • 访  问  量:535

详细介绍

线路工程测量内容:①在规划阶段,为工程设计提供必要的测绘资料和其他数据;②在建设阶段,对线路中线和坡度按设计位置进行实地测设,包括施工控制测量、线路中线及腰线放样、曲线测设、纵横断面测量,以及竣工测量和验收;③在运营阶段,对线路工程进行变形监测等。

目的

线路测量的目的是确定线路的空间位置,在勘测设计阶段主要是为工程设计提供资料;在施工阶段主要是将线路中线(包括直线和曲线)按设计的位置进行实地测设。各种线形工程的测量工作大体相似,其中铁路线路测量具有典型性。 [1]

过程与方法

铁路勘测通常分为初测和定测两个阶段。初测是根据踏勘提出的线路的不同方案,对沿线地形、地质和水文等进行较详细的测量。其任务是在沿线进行导线测量建立平面控制,进行水准测量建立高程控制和测绘带状地形图,并在图上进行纸上定线,供编制初步设计时使用。带状地形图以导线点和沿线水准点作为平面控制点和高程控制点来施测,测图比例尺一般为1:5000或1:2000,地形复杂地段也可为1:1000。纸上定线是在带状地形图上设计线路的走向和坡度。作法是根据转向点的概略位置,在相邻直线之间用曲线连接,根据设计的半径R和在图上量得的转向角α求出曲线要素值,计算里程,标明桩号。路线确定后,根据图解高程绘制线路中线纵断面图,设计坡度,计算工程量,供方案比选和定测时应用。定测是将所设计的线路测设到实地上的工作。主要内容有中线测量、曲线测设和断面测量。 [2]

中线测量

把设计图上的中线测设到实地上的工作,分放线和中桩测设两步进行。放线  把纸上定线的各交点间的直线测设到地面上的工作。这时可用地面上的初测导线为依据,把每条直线段独立的测设出来,再将相邻两直线延长相交,定出线路中线的转向点。也可根据纸上定线的各交点的坐标,预先在室内计算出各直线段的长度和转向角,在实地按计算数据定出中线。中桩测设  在线路中线上测设百米桩、加桩、控制桩和曲线主点桩的工作。内容包括:丈量线路的直线长度,详细测设曲线,按规定要求设置中线桩。量距一般用钢尺往返丈量,相对误差不大于1/2000。中线桩不仅表示线路中线在地面上的位置和离开线路起点的里程,而且是测绘线路纵、横断面图的依据。

曲线测设

为使车辆平顺的转变方向,需在两相邻直线间测设所设计的曲线。其中有平曲线和竖曲线。平曲线分为圆曲线和缓和曲线两种。圆曲线又有单曲线、复曲线、反向曲线和回头曲线等多种。圆曲线  一定半径R的圆弧构成的曲线(图1)。控制圆曲线形状的3个主要点称为圆曲线主点,即图中直圆点(ZY)、曲中点(QZ)和圆直点(YZ)。测设圆曲线的基本数据称为圆曲线要素,即图中的切线长T、曲线长L和外矢距E。测设曲线时,先测设曲线主点,再测设曲线细部点。缓和曲线  连接直线和圆曲线的过渡曲线(图2)。缓和曲线的曲率半径是由无穷大逐渐变化为圆曲线的半径。在缓和曲线上任一点的曲率半径与该点至起点的曲线长度成反比。在圆曲线的两端加设等长的缓和曲线后,曲线主点则为:直缓点(ZH)、缓圆点(HY)、曲中点(QZ)、圆缓点(YH)和缓直点(HZ)。当圆曲线半径R、缓和曲线长l0及转向角α已知时,曲线要素切线长T、外矢矩E、曲线长L和切曲差q等数值即可算得,据以测设曲线主点。

断面测量

线路测量中沿某一方向测量地面起伏的工作。一般分为纵断面测量和横断面测量。纵断面测量  测量线路中线桩地面高程的工作。具体施测方法与一般水准测量相同。根据纵断面测量成果绘制纵断面图,供设计坡度用。为了显示地势变化,图的高程比例尺通常比水平距离比例尺大10或20倍。绘图时以距离为横坐标,高程为纵坐标,按规定的比例尺将外业所测各点画在毫米方格纸上,依次连接各点即为沿线路中线的地面线。横断面测量  测量垂直于线路中线方向的地面起伏的工作。在线路上所有百米桩和加桩处都应测量横断面。测量时以中线桩为准,在与线路中线的垂直方向上分别测量两侧各变坡点至中线桩的水平距和高程差,并根据测得的数值绘制横断面图。横断面图主要用于设计线路横断面的形状、计算土石方量、放样边坡和布置各种构筑物。横断面图的距离与高程比例尺相同,一般为1:100或1:200。

二、桥梁测量

工程测量——线路与桥隧测量

简介

着国民经济的快速发展,综合国力的不断增强,横贯我国东西、纵贯我国南北的交通基础设施网络建设取得了令人瞩目的变化和成果。这其中,无论在蜿蜒曲折的万里长江上,还是在星罗棋布的内陆湖泊、大型支流、河流上,一座座如彩虹般的桥梁千姿百态,蔚为壮观,为加速我国经济的更快发展起到如虎添翼的非凡作用。随着桥梁建设技术的不断发展和创新,近10年来,我国十分重视在主要的江河及其大型支流上建设大型桥梁,尤其是江河入海口的宽阔江面及海湾大桥等巨型桥梁建设的实施,为桥梁工程测量及安全监测技术的发展和创新提供了广阔的舞台。本章重点叙述桥梁工程测量的基本内容。桥位勘测和桥梁施工测量的技术应符合《公路桥位勘测设计规范》和《公路桥涵施工技:术规范》的要求 [1] 。

主要任务

测绘是国民经济建设的基础,大型桥梁工程建设也不例外。桥梁工程测量的目的是为桥梁建设提供准确、可靠的陆地及河床、河流状态等的基础地理信息资料,包括各种比例尺的地形图、接线段的纵横断面数据,建立满足桥梁施工的控制系统等,为建设单位综合政治、经济、技术等诸多因素提供准确的可比较的桥位资料以供决策使用,满足各阶段设计需要。建立大桥施工、安装的精确的整体协调的基础控制系统,监测大桥施工中的动态情况,为大桥建设提供各类科学决策的量化依据。

测量内容

按照桥梁建设的规律和实践,桥梁测量一般可划分为以下几种:(1)可行性(预可、工可)阶段的调查测量(洪水痕迹、河床演变、地表特征的调查测量)或中小比例尺的规划测绘、桥位比选测量(桥位总平面图和桥址地形图的测量,桥位中线和引道纵横断面测量等)。(2)初步设计阶段桥址区陆地和水下大比例尺地形测绘(一般为1:500地形测绘,有的在桥墩附近局部区域施测1:200地形)、河床比降、水深、航迹线、流速及流向测量,根据简易控制网进行接线段初测及定测(桥位中线和引道纵横断面测量,主桥、引桥、接线及互通工程的测量工作)。(3)施工阶段建立较高等级的平面和高程施工控制网、桥轴中线定测、施工测量、施工期敏感部位或不可预见的地质缺陷部位必要的安全监测等。桥梁首级施工控制网的精度等级一般根据建设桥梁的长度确定,对于大型桥梁以二等精度设计、实施。施工测量包括桥墩、桥台施工放样测量、构件安装的精密放样测量、其他防护和排水构造物的放样等。(4)运营管理期的安全监测,包括建成通车动、静载试验时间段的高密度、高频率监测,运营期高水位、高水流、强气流(强台风)等恶劣自然条件下桥梁安全的实时监测及一般条件下一定频度的动态安全监测等。根据我国国民经济和桥梁建设的实际情况,桥梁工程测量一般按阶段进行,也有将部分阶段合并交叉进行的,如初设阶段和施工设计阶段的桥梁中心线、接线线路的初测、定测工作,也有将初、定测一次完成的 。

三、隧道测量

工程测量——线路与桥隧测量

定义


隧道工程测量(tunnel engineering survey)是在隧道工程的规划、勘测设计、施工建造和运营管理的各个阶段进行的测量。为保证隧道能按规定的精度正确贯通及相关的建筑物与构筑物的位置正确,从而要求:规划阶段,提供隧道选线用的地形图和地质填图所需的测绘资料;勘测设计阶段,在隧道沿线布测测图控制网,测绘带状地形图,实地进行隧道的洞口点、中线控制桩和中线转折点的测设,绘制隧道线路平面图、纵断面图、洞身工程地质横断面图、正洞口和辅助洞口的纵断面图等工程设计图;施工建造阶段,根据隧道施工要求的精度和施工顺序进行相应的测量,首先根据隧道线路的形状和主洞口、辅助洞口、转折点的位置进行洞外施工控制网和洞口控制网的布没及施测,再进行中线进洞关系的计算及测量,随隧道向前延伸而阶段性地将洞内基本控制网向前延伸,并不断进行施工控制导线的布测和中线的施工放样,指导并保证不同工作面之间以预定的精度贯通,贯通后进行实际贯通误差的测定和线路中线的调整,施工过程中进行隧道纵横断面测量和相关建筑物的放样,以及进行竣工测量;在施工建造和运营管理阶段,定期进行地表、隧道洞身各部位及其相关建筑物的沉降观测和位移观测。

实施阶段


地面控制测量
(1)平面控制测量
隧道工程平面控制测量的主要任务是测定各洞口控制点的平面位置,以便根据洞口控制点将设计方向导向地下,指引隧道开挖,并能按规定的精度进行贯通。因此,平面控制网中应包括隧道的洞口控制点。通常,平面控制测量有以下几种方法。
① 直接定线法
对于长度较短的直线隧道,可以采用直接定线法。如图12-31所示,A、0两点是设计的直线隧道洞口点,直接定线法就是把直线隧道的中线方向在地面标定出来,即在地面测设出位于AD直线方向上的月、C两点,作为洞口点火、0向洞内弓1测中线方向时的定向点。
在4点安置经纬仪,根据概略方位角。定出月’点。搬经纬仪到B’点,用正倒镜分中法延长直线到C’点。搬经纬仪至Cf点,同法再延长直线到0点的近旁0’点。在延长直线的同时,用经纬仪视距法或用测距仪测定义月”、月”C’和C”D”的长度,量出D’0的长度。计算C点的位移量。在CJ点垂直于CfD’方向量取C”C,定出C点。安置经纬仪于C点,用正倒镜分中法延长DC至月点,再从属点延长至A点。如果不与A点重合,则进行第二次趋近,直至月、C两点正确位于AD方向上。月、C两点即可作为在人、0点指明掘进方向的定向点,4、月、C、0的分段距离用测距仪测定,测距的相对误差不应大于1:5000。

②导线测量法
连接两隧道口布设一条导线或大致平行的两条导线,导线的转折角用U2级经纬仪观测,距离用光电测距仪测定,相对误差不大于1:10000。经洞口两点坐标的反算,可求得两点连线方向的距离和方位角,据此可以计算掘进方向。
③ 三角网法
对于隧道较长、地形复杂的山岭地区,地面平面控制网一般布置成三角网形式,如图12-32所示。测定三角网的全部角度和若干条边长,或全部边长,使之成为边角网。三角网的点位精度比导线高,有利于控制隧道贯通的横向误差。

④GPS法
用全球定位系统GPS技术作地面平面控制时,只需要布设洞口控制点和定向点且相互通视,以便施工定向之用。不同洞口之间的点不需要通视,与国家控制点或城市控制点之间的联测也不需要通视。因此,地面控制点的布设灵活方便,且定位精度已优于常规控制方法。
(2)高程控制测量
高程控制测量的任务是按规定的精度施测隧道洞口(包括隧道的进出口、竖井口、斜井口和平响口)附近水准点的高程,作为高程引测进洞的依据。高程控制通常采用三、四等水准测量的方法施测。
水准测量应选择连接洞口最平坦和最短的线路,以期达到设站少、观测快、精度高的要求。每一洞口埋设的水准点应不少于两个,且以安置一次水准仪即可联测为宜。两端洞口之间的距离大于1km时,应在中间增设临时水准点。
隧道施工测量
(1)隧道掘进的方向、里程和高程测设
洞外平面和高程控制测量完成后,即可求得洞口点(各洞口至少有两个)的坐标和高程,根据设计参数计算洞内中线点的设计坐标和高程。坐标反算得到测设数据,即洞内中线点与洞口控制点之间的距离、角度和高差关系。测设洞内中线点位。
① 掘进方向测设数据计算
如图12-33所示一直线隧道的平面控制网,A、B、C、…、G为地面平面控制点。其中A、G为洞口点,多l、5z为设计进洞的第1、第2个中线里程桩。为了求得A点洞口中线掘进方向及掘进后测设中线里程桩31,用坐标反算公式求测设数据:
对于G点洞口的掘进测设数据,可以作类似的计算。
对于中间具有 曲线的隧道,如图12-34所示,隧道中线转折点C的坐标和曲线半径只已由设计文件给定。因此,可以计算两端进洞中线的方向和里程并测设。当掘进达到曲线段的里程以后,按照测设线路工程平面圆曲线的方法测设曲线上的里程桩。

② 洞口掘进方向标定
隧道贯通的横向误差主要由隧道中线方向的测设精度所决定,而进洞时的初始方向尤为重要。因此,在隧道洞口,要埋设若干个固定点,将中线方向标定于地面,作为开始掘进及以后与洞内控制点联测的依据。如图12-35所示,用1、2、3、4标定掘进方向,再在洞口点火与中线垂直方向上埋设5、6、7、8桩。所有固定点应埋设在不易受施工影响的地方,并测定入点至2、3、6\7点的平距。这样,在施工过程中可以随时检查或恢复洞口控制点的位置和进洞中线的方向及里程。

③洞内中线和腰线的测设
中线测设:根据隧道洞口中线控制桩和中线方向桩,在洞口开挖面上测设开挖中线,并逐步往洞内引测中线上的里程桩。一般,当隧道每掘进20m要埋没一个中线里程桩。 中线桩可以埋设在隧道的底部或顶部,如图12-36所示。
腰线测设:在隧道施工中,为了控制施工的标高和隧道横断面的放样,在隧道岩壁上,每隔一定距离(5-10m)测设出比洞底设计地坪高出1m的标高线,称为腰线。腰线的高程由引入洞内的施工水准点进行测设。由于隧道的纵断面有一定的设计坡度,因此,腰线的高程按设计坡度随中线的里程而变化,它与隧道的设计地坪高程线是平行的。
④掘进方向指示
隧道的开挖掘进过程中,洞内工作面狭小,光线暗淡。因此,在隧道掘进的定向工作中,经常使用激光准直经纬仪或激光指向仪,以指示中线和腰线方向。它具有直观、对其他工序影响小、便于实现自动控制等优点。例如,采用机械化掘进设备,用固定在一定位置上的激光指向仪,配以装在掘进机上的光电接收靶,当掘进机向前推进中,方向如果偏离了指向仪发出的激光束,则光电接收靶会自动指出偏移方向及偏移值,为掘进机提供自动控制的信息。
(2)洞内施工导线和水准测量
①洞内导线测量
测设隧道中线时,通常每掘进20m埋设一个中线桩。由于定线误差,所有中线桩不可能严格位于设计位置上。所以,隧道每掘进至一定长度(直线隧道约每隔100m左右,曲线隧道按通视条件尽可能放长)布设一个导线点,也可以利用埋设的中线桩作为导线点,组成洞内施工导线。导线的转折角采用DJ2级经纬仪至少观测两个测回。距离用经过检定的钢尺或光电测距仪测定。洞内施工导线只能布置成支导线的形式,并随着隧道的掘进逐渐延伸。支导线缺少检核条件,观测应特别注意,转折角应观测左角和右角,边长应往返测量。根据导线点的坐标来检查和调整中线校位置。随着隧道的掘进,导线测量必须及时跟上,以确保贯通精度。
②洞内水准测量
用洞内水准测量控制隧道施工的高程。隧道向前掘进,每隔;200-500M应设置一个洞内水准点,并据此测设腰线。通常情况下、可利用导线点作为水准点,也可将水准点埋设在洞顶或洞壁上,但都应力求稳固和便于观测。洞内水准线路也是支水准线路,除应往返观测外,还须经常进行复测。
(3)盾构施工测量
盾构法是隧道施工采用的一项综合性施工技术,它是将隧道的定向掘进、运输、衬砌、安装等各工种组合成一体的施工方法。其工作深度可以很深,不受地面建筑和交通的影响,机械化和自动化程度很高,是一种先进的土层隧道施工方法,广泛用于城市地下铁道、越江隧道等工程的施工中。
盾构的标准外形是圆筒形,也有矩形、半圆形等与隧道断面相近的特殊形状。图12-37所示为圆筒形盾构及隧道衬砌管片的纵剖面示意图。切口环是盾构掘进的前沿部分,利用沿盾构圆环四周均匀布置的推进千斤顶,顶住己拼装完成的衬砌管片(钢筋混凝土预制),使盾构向前推进。

盾构施工测量主要是控制盾构的位置和推进方向。利用洞内导线点测定盾构的位置(当前空间位置和轴线方向)。用激光经纬仪或激光定向仪指示推进方向,用千斤顶编组施以不同的推力,进行纠偏,即调整盾构的位置和推进方向。
竖井联系测量
在隧道施工中,除了通过开挖平峒、斜井以增加工作面外,还可以采用开挖竖井的方法来增加工作面,将整个隧道分成若干段,实行分段开挖。例如,城市地下铁道的建造,每个地下站是一个大型竖井,在站与站之间用盾构进行开挖,并不受城市地面密集的建筑物和繁忙交通的影响。
为了保证地下各方向的开挖面能准确贯通,必须将地面控制网中的点位坐标、方位和高程,通过竖井传递到地下,这项工作称为竖井联系测量。竖井施工前,根据地面控制点把竖井的设计位置测设于地面。竖井向地下开挖,其平面位置用悬挂大锤球或用垂准仪测设铅垂线,可以将地面的控制点垂直投影至地下施工面。工作原理和方法与高层建筑的平面控制点垂直投影完全相同。高程控制点的高程传递可以用钢卷尺垂直丈量法或全站仪天顶测距法。参见第ll章的有关内容。

竖井施工到达设计底面以后,应将地面控制点的坐标、高程和方位作最后的精确传递,以便能在竖井的底层确定隧道的开挖方向和里程。由于竖井的井口直径(圆形竖井)或宽度(矩形竖井)有限,用于传递方位的两根铅垂线的距离相对较短(一般仅为3-5m),垂直投影的点位误差会严重影响井下方位定向的精度。如图12-38所示,Vl、V2是 圆形竖井井口的两个投影点,垂直投影至井下。由于投点误差,至井底偏移到V1、认。设VlV=Vz八,则产生的方位角误差为:
凸”=2严I/11/;/I/lI/z (12-13)
式中ρ为206265″。
设V11/z=5m,VlVL=1mm,则产生的方位角误差么。=l’23″。一般要求投点误差应小于0.5mm。两垂直投影点的距离越大,则投影边的方位角误差越小。该边的方位角要作为地下洞内导线的起始方位角。因此,在竖并联系测量工作中,方位角传递是一项关键性工作,主要有一井定向、两井定向、陀螺经纬仪定向等方法。
隧道竣工测量
隧道工程竣工后,为了检查工程是否符合设计要求,并为设备安装和运营管理提供基础信息,需要进行竣工测量,绘制竣工图。由于隧道工程是在地下,因此隧道竣工测量具有独特之处。
验收时检测隧道中心线。在隧道直线段每隔50m、曲线段每隔20m检测一点。地下永久性水准点至少设置两个,长隧道中每公里设置一个。

隧道竣工时,还要进行纵断面测量和 横断面测量。纵断面应沿中线方向测定底板和拱顶高程,每隔10-20m测一点,绘出竣工纵断面图,在图上套绘设计坡度线进行比较。直线隧道每隔10m、曲线隧道每隔5m测一个横断面。横断面测量可以用直角坐标法或极坐标法。如图12-39a所示,用直角坐标法测量隧道竣工横断面。测量时,是以横断面的中垂线为纵轴,以起拱线为横轴,量出起拱线至拱顶的纵距ti和中垂线至各点的横距)”,还要量出起拱线至底板中心的高度z’等,依此绘制竣工横断面图。如图12-39b所示,用极坐标法测量竣工横断面。用一个有0。一360’刻度的圆盘,将圆盘上0。一180’刻度线的连线方向放在横断面中垂线位置上,圆盘中心的高程从底板中心高程量出。用长杆挑一皮尺零端指着断面上某一点,量取至圆盘中心的长度,并在圆盘上读出角度,即可确定点位。在一个横断面上测定若干特征点,就能据此绘出竣工横断面图 。


产品咨询

留言框

  • 产品:

  • 您的单位:

  • 您的姓名:

  • 联系电话:

  • 补充说明:

半岛.体育(中国)官方网站
地址:山东省东营市东三路172号星达测绘
邮箱:star_sur@163.com
传真:0546-8338000
关注我们
欢迎您关注我们的微信公众号了解更多信息:
欢迎您关注我们的微信公众号
了解更多信息